Chimeric constructs endow the human CFTR Cl- channel with the gating behavior of murine CFTR.

نویسندگان

  • Toby S Scott-Ward
  • Zhiwei Cai
  • Elizabeth S Dawson
  • Ann Doherty
  • Ana Carina Da Paula
  • Heather Davidson
  • David J Porteous
  • Brandon J Wainwright
  • Margarida D Amaral
  • David N Sheppard
  • A Christopher Boyd
چکیده

The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel gated by ATP-driven nucleotide-binding domain (NBD) dimerization. Here we exploit species differences between human and murine CFTR to investigate CFTR channel gating. Using homologous recombination, we constructed human-murine CFTR (hmCFTR) chimeras with sequences from NBD1, NBD2, or the regulatory domain (RD) of human CFTR replaced by the equivalent regions of murine CFTR. The gating behavior of hmRD and human CFTR were indistinguishable, whereas hmNBD1 and hmNBD2 had subtle effects on channel gating, prolonging both burst duration and interburst interval. By contrast, hmNBD1+2, containing both NBDs of murine CFTR, reproduced the gating behavior of the subconductance state of murine CFTR, which has dramatically prolonged channel openings. The CFTR potentiator pyrophosphate (PP(i)) enhanced human, hmRD, and hmNBD1 CFTR Cl(-) currents, but not those of hmNBD2, hmNBD1+2, and murine CFTR. By analyzing the rate-equilibrium free-energy relationships of chimeric channels, we obtained snapshots of the conformation of the NBDs during ATP-driven dimerization. Our data demonstrate that the conformation of NBD1 changes before that of NBD2 during channel opening. This finding suggests that NBD dimerization does not proceed by a symmetric tweezer-like motion, but instead in an asymmetric fashion led by NBD1. We conclude that the NBDs of murine CFTR determine the unique gating behavior of its subconductance state, whereas NBD2 controls channel potentiation by PP(i).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-dependent Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Cl− Channel

When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expr...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP ...

متن کامل

Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation.

A recently cloned isoform of cGMP-dependent protein kinase (cGK), designated type II, was implicated as the mediator of cGMP-provoked intestinal Cl- secretion based on its localization in the apical membrane of enterocytes and on its capacity to activate cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels. In contrast, the soluble type I cGK was unable to activate CFTR in in...

متن کامل

Rescue of F508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules

Van Goor, Fredrick, Kimberly S. Straley, Dong Cao, Jesús González, Sabine Hadida, Anna Hazlewood, John Joubran, Tom Knapp, Lewis R. Makings, Mark Miller, Timothy Neuberger, Eric Olson, Victor Panchenko, James Rader, Ashvani Singh, Jeffrey H. Stack, Roger Tung, Peter D. J. Grootenhuis, and Paul Negulescu. Rescue of F508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 41  شماره 

صفحات  -

تاریخ انتشار 2007